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Stability Analysis of Injection-Locked
Oscillators in Their Fundamental
Mode of Operation

ENRICO F. CALANDRA, MEMBER, IEEE, AND ANTONINO M. SOMMARIVA

Abstract — Phase-lock stability of fundamental-wave injection-
synchronized oscillators is investigated on the basis of a new time-domain
approach. Starting from a quite general oscillator modeling and assuming
single-frequency quasi-static operation, both exact and first-order ap-
proximate stability criteria are derived in a fully analytical form suitable for
computer implementation. The examples worked out demonstrate good
agreement of this theory with experimental observations available in the
literature on multiple-tuned oscillators, whose behavior under large-signal
injection was so far predictable only through graphical methods.

1. INTRODUCTION

HE LOCKING STABILITY of injection-synchronized

oscillators in their fundamental mode of operation,
first analyzed by Van der Pol in 1927 [1], has been investi-
‘gated by several authors under various simplifying hy-
potheses [2]~[8]. The simplest approach was presented by
Adler [2] who, studying the regenerative triode oscillator,
derived an expression of the available locking bandwidth
for highly saturated single-tuned oscillators under low in-
jection level operation. Later an extension of this theory to
higher levels has been developed by Paciorek [3]. Both of
these treatments have practical interest for microwave tech-
niques since they permit simple explanation of a number of
experimental observations. Nevertheless, they become in-
adequate when an instantancous amplitude limitation can-
not be assumed since, in this case, the nonlinear character-
istics of the active device cannot be neglected. A more
comprehensive circuit model, in which these nonlinearities
are taken into account under the simplifying assumption of
frequency independence, has been then examined by
Kurokawa [4]. By means of a first-order approximation he
derived some general stability criteria for low-level injec-
tion. This approach has been subsequently extended by
other authors to the case in which the nonlinear immit-
tance of the active device is frequency dependent and the
level of the injected signal is high [5], [6]. However, as
pointed out by Kurokawa himself [7], all these first-order
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Fig. 1. Equivalent circuit of an injection-locked oscillator.

theories fail when the tank circuit of the system under
examination exhibits a loop in its immittance locus (such
as in multiple-tuned oscillators). As an alternative, he
worked out a quasi-static theory capable of explaining all
the common phenomena observed in practice [7], [8]. Un-
fortunately, the proposed method is rather cumbersome,
due to the graphical nature of the procedure.

In this paper, a new quasi-static theory is developed. It
permits, whatever the injection level, an exact investigation
of the locking stability in a fully analytical form suitable
for computer implementation. Starting from a quite gen-
eral oscillator modeling, a differential equation is first
derived, rigorously describing the behavior of the nonlinear
system (Section IT). A stability-equivalent shortened equa-
tion is then obtained which enables a compact formulation
of the phase-lock conditions through classical algorithms of
System Theory (Section III). On this basis, improved first-
order criteria are also deduced allowing a significant com-
parison with the aforementioned approximate theories
(Section IV). As an example, a double-tuned oscillator is
analyzed and the results obtained are discussed with refer-
ence to other theoretical and experimental data available in
the literature (Section V).

II. EQUIVALENT CIRCUIT AND BASIC EQUATIONS

The equivalent circuit employed in our analysis for the
modeling of a negative conductance injection-locked mi-
crowave oscillator is shown in Fig. 1. In this circuit, three
basic elements are in evidence: a sinusoidal current source;
a linear, lumped, time-invariant two-port; a nonlinear ¢le-
ment. The current source represents the synchronizing gen-
erator which injects power, in the fundamental mode
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analyzed here, at a frequency w close to the free-running
oscillation frequency. The linear two-port represents all the
passive components of the physical system (the resonant
cavities, the nonreciprocal coupling network, the load, etc.)
including the parasitics due to the package and mounting
of the active device [9]. This implies that the a—a’ reference
plane shown in Fig. 1 does not generally coincide with the
terminals of the encapsulated component and, therefore, it
may not be physically accessible. The active part of the
negative conductance device is represented by the nonlin-
ear one-port, whose differential description, in terms of
instantaneous voltage and current, is supposed to be of the
form

P K 0
ZPDP(Zkap,kvk)zquBqui (1)
0 1 0
where D stands for the differential operator d/dt, and «, ,
and B, are constants depending on the particular device
and bias, The proposed description is a generalization of
the instantaneous relationship /=f(v) usually employed
for the characterization of memoryless voltage-controlled
nonlinear one-ports. Owing to its differential nature, it is
suitable for the time-domain modeling of a number of
microwave components whose large-signal characteristics
are both voltage and frequency dependent (e.g., voltage-
excited IMPATT diodes [10]). On the other hand, if the
dynamic behavior of the active element is better described
by functions nonlinear with current rather than voltage
(e.g., current-excited IMPATT diodes [11]), the alternative
characterization obtained interchanging voltage and cur-
rent in (1) can be employed. A dual treatment could then
be developed in a manner analogous to that described here.
In order to perform an analytical investigation of the
locking stability we have first to derive a differential equa-
tion relating, in a suitable form, the voltage across the
active element to the injection current. Since the equivalent
circuit of Fig. 1 is supposed to represent a monochromatic
oscillator entrained by a nearly synchronous driving source,
we are allowed to assume, for the RF voltage during
transients, the expression

v(t)=V(¢t)cos(wt+¢(1)) (2)

where V(¢) and ¢(¢) are slowly varying functions over the
RF period. This single-frequency quasi-static hypothesis,
extensively adopted in the literature dealing with this sub-
ject [4]-{8], is usually verified to a high degree of accuracy
when untuned-harmonics microwave oscillators are con-
cerned. Therefore, it does not constitute a significant limi-
tation to our purpose.

Substituting (2) into (1), after some manipulation, we get

EPDP Zk [&pk(V)

Y
-Veos(kwt+ke)| ZEQBqui (3)
0
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where the functions &, (V') are given by

int(K/2) -

2: 21—1 _
Ei ?aP,ZIV . k—O
X _ 1
&, (V)= in{(K=k)/2)
2tk 2+ k—1
i 221+k71ap,21+kV ,  k#0

(4)
in which C, represents the binomial coefficient m! /(n!(m
—n)!). Since, for each k, the terms contained in the square
brackets at the left-hand side of (3) are substantially
sinusoidal quantities of frequency kw, we can separate the
equations pertaining to different current components
through a harmonic balance method. The fundamental-
wave differential characterization of the nonlinear element
is, therefore, expressed, in complex form, by

P Qo
EPDP(&p‘IVe”SeJ“”): EquDq(IeNefw’) (5)
0 0

where I(t) and y(t) are the amplitude and phase of the
first-harmonic component of the current. Setting V{(),
o(2), I(2), Y(t) constant in this equation, we find the
following expression for the nonlinear admittance:

P
2, (jw) ar!
. le/¥ op
Y,(jo,V)=2 =L (6)
Vel g
2, ()8,
0 q

whose structure makes it evident that the coefficients &,
and B, can be calculated through computer reduction of
steady-state measurements on the active device [12]. From
the right-hand side part of the equivalent circuit one may
easily obtain, through classical methods of analysis, the
differential equation

H R s
Eh v, D"(Velte/*") = 2r8,D’(IeJ‘Pef°”) + Esest(Ioef‘”)
0 0 0

(7)
in which v,, 8,, and €, are constants depending on the

particular network involved. By means of an elimination
algorithm (5) and (7) can be combined into

N M
2,0, (V) Verrer )= T, (jw) I, Lo (8)
0 0

Introducing now, for the sake of compactness, the complex
frequency

=y e q) ©)
and the differential operator
(D+s)°f(V)=F(V)
(D+5)* f(V)=(D+s){(D+35)* ' f(V)}  (10)
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the nth term on the left-hand side of (8) can be put in the
form

D"(@Z,H(V) . V(t)e”’(’)ef‘”) .
= ((D'i"s)n%n(V)) . V(t)eJ‘P(t)ejwt (1 1)

which constitutes an extension of the symbolic notation
presented by Kurokawa in [4]. Substituting (11) into (8)
and canceling the common factor e/**, we get finally

( N
2,
0
This phasorial relationship, to the authors’ knowledge not
previously derived, rigorously describes the dynamic be-
havior of the system under the assumptions made and is
the starting point of our stability investigation. Under

sinusoidal operation it reduces to the customary form
steady-state equation

(ENnuw)"%

0

(D+s)"N, )Vef"’—(z (jw) M ) (12)

Velt=

Em(jw)'"%m)lo (13)

which implicitly defines the coordinates V,, ¢, of the equi-
librium points corresponding to a given couple of input
parameters [, w.

1

In order to evaluate if a particular equilibrium point
represents a stable locking condition, we have to ascertain
whether a small perturbation in the corresponding steady-
state values of amplitude and phase decays or not with
time. It will be shown here that such investigation can be
performed, after appropriate manipulation of (12), resort-
ing to the classical methods of System Theory. In this
connection, let us observe that in the expansion of (D -+
§)"9N,, all the terms of the form

g(v)- H(dtk) (

n—1

Ek(pk+qk)>1
1

LOCKING STABILITY ANALYSIS

o) (14)

dt*
with

can be eliminated since, as will be clear later on, they give
no contribution to stability calculations. Therefore, the
following reduced expansion holds:

d%¢

(D+5)" N, =(jo)" N, + 2 CF-(jo) ™"
1
dot \ 4%V
n ) L2 4ot
)dtk J

[(@IL/Jr av ”dtk]' (15)

Substituting the latter into (12) and interchanging the
order of the summations at the left-hand side yields
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If we introduce now

N
N=3, (jw)" €N,
0

M
M=3,, (jo)"IN,, (1)
0
and recognize that
k N
O et S, Ch- o) o, (18)
dek X
the more concise expression is obtained from (16)
<N ak“@L) d\v
N+
Ek k! [(V dk  dwkaV
%N d ¢]
+j— Ve'*=M1,. (19
Bk dr* oo (19)

Separating real and imaginary parts, we get then

%,+int{21V/2} (_l)p[(l alp%/ 82p+1%/ ) deV
P Qp)\V aw?r  dwtrev | ar?
92eo d2p¢ int {(N+1/2)} (_l)q 1 32¢—lo~
da dtzf’]_ 4 (2q—1)![(? de?a7!
a2q@‘(//f d2q—1V an—l%r d2q—l¢
32—y | dr?a~! w29l grra?
IO ’ 27 o
:?(GJTL cos¢+IM” sing) (20a)
and
int{N/2} —1 2pGY 1 2p+1oy » 2p
Wt S ( )[(la n 8 ‘D‘L)sz
P 2p) [\ V de? OV | di*?
2pGy 7 J2p, int{(N-+1/2)} —1 q 2g—16y 7
L3PV ] L (=17 [{ 1092 '%
0w dr*? 4 (2g= DYV dera!
an(DL/ d2q—1V a2q*1%// d2q—1¢
aoﬂq“av) R Ve e e
I .
= ﬁ(%” coso— M 'sin¢) (20Db)
where
N'=Re {9} 7=Im {9}
OM'=Re {9} M"”=Im (M }. (21)

As (20a) and (20b) can always be solved for the maximum
order derivatives ¥V /dt" and d™¢ /dtV, respectively, they
can be substituted by an equivalent set of first-order dif-

dn

n

14

( E:"(jw)n%ﬁ Ellvk E]:n an'(jw)"”‘[( X

k
n)d_K.;. o,
dt*

dv

ke

n (16)
dt*

2t ffamrn)
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ferential equations of the form

d
{dif:xk+2}7 k:1,2,"',2N_2

dx,y_
_%ZL;[_l:fl(thb' : '»sz)

dx,

dr =A%, %050, X) (22)
with
[y
2
dm , k odd
t
X, = k_22 (23)
do2 ¢
el k even.
>

This fact enables us to make use of the assessed techniques
employed for the local stability analysis of nonlinear sys-
tems described by state equations [13]. As a first step in
this procedure, the Jacobian matrix associated with the
system (22) must be calculated

J=

_a_(dsz)__ J (dsz)
ox, \ dt 0xon \ Al ) | x=v, x=,, x,=00=3,.. 2N)
(24)
According to (24), from (13), (20) and (22), we find
°© . ____ L ___
J aobo_: ay by-ray_ by, (25)
Codo 1 €y dy ey dyy [anson
where
1[99 _
—Fv[_f; v }V,’ k=0
—1 (k12 kGy 1 k+1Gy 1
o= (=D [la@z 9 %},kodd
k'H, Vodwk dck,... V]
(—1)"/2[1 gk ak“%} k
- - s c even
KUH, |V 30k ko |y, ©
Lo, k=0
H, v
_1)(k+1)/2 ak%/
bk:J( =T —| . kodd
M1y dw” v
(=1 [ <o .
kA, ol P even
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L[ e _
E[ L+ 8 ] k=0
I G D  odd
%= KUH, |V au*  awror |, ©°
(—1)"/2[1 8k ak+1@z~] .
kKHy, [V yek 3 oV v, even
1 ,
_E[%]K’ k=0
(1“7 [aror]
4= KH, | et |, Y 26)
(_l)k/z ak%/
—W W V:, k even
with
(__ 1)1nt((N-l-1)/2} 1 aN( %,_%//)
= NI [I_/ de
N aN+1(gl'/_%//)
9oV V.
B (_ 1)int((N+ 1)/2} aN(%/_%II) 27
H,= N v . (27)

The characteristic equation associated with the Jacobian
matrix (25) is, therefore, given by

}‘m_(a}v—l‘Hi’zvﬂ)}‘m_1
2

N—2 [ N—1
+ Zk ( Zh ath+k—h—bth+k—h_ak_dk)>‘N+k
0\ k+1
N—1

+ 2

0

k 2N
Ehahdk—h_bhck-h))\k: kakh"zo
0 0

(28)
whose roots, for the asymptotic stability of the equilibrium
point considered, must have negative real parts. This inves-
tigation can be easily accomplished resorting to one of the
conventional methods available in the literature, such as
Routh criteria, which are suitable for a straightforward
computer implementation.

Before concluding let us recognize that if we had em-
ployed the complete expansion of (D+s5)"9,. the func-
tions f; and f, in (22) would contain now additional terms
of the form

2N 2N
h(x)- Il xx,  with el (29)
k=3
3
A little thought reveals, however, that these terms do not
affect the exactness of the characteristic polynoml, since

their individual contribution to the elements of the Jacobian
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matrix exhibits at least a multiplicative factor x, (k=3)
and this factor is zero at equilibrium points.

1v.

The analysis carried out in the previous section shows
that a set of 2N inequalities is to be tested in order to
perform an exact investigation of the phase-lock stability.
However, if only a qualitative picture of the locking phe-
nomena is needed, a more compact set of stability criteria,
deduced from a first-order approximation, can be conveni-
ently applied. This approximate approach is based on the
simplifying assumption that all higher order time deriva-
tives of the RF voltage amplitude and phase are negligibly
small as compared with the first-order ones, allowing us to
make use of the reduced expansion

(D+s)"9,=(jo)" I, +n(jw)""

N, N, \dv . do
{( AT )‘d?ﬂ%"ﬁ . (30)
Substituting (30 into (12) we get, through a procedure
similar to that followed in Section III, the system of
differential equations

IMPROVED FIRST-ORDER CRITERIA

1 a%// 2%// a%/ dq)
@l—'—(V 3 aan) & The
:I—;(%’cos¢+%"sinq>)
(LI P v o g
V dw  dwdV | dt do dr
:%(@K"cosq)—%'sinqﬁ). (31)

With this system, a 2X2 Jacobian matrix is associated,
whose characteristic polynomial is

A+ gm-é

(32)
where

’ %, 6_9}/_, ’”
[@L(—V——i- = )+% (
AN N’
WV Jdw

2%/

o T gan)] v,
am')
).

dwdV
82%//

Accordmg to this reduced polynomial, the following first-

order stablhty criteria result:

%//
V

%/r )]
Yl

2 99U
R (I_/ dw

82%" )

dwdV

_[ao aou
@:[ W dw

2 9
V e

8%'( 1 99U

_(D'L//(

4

+

Ir]

do \ V dw

a%// l a@z’//
dw \V dw

dwdV (33)

Il B
Il ®

v
o

>(

(34)
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to which both the tern (triplet) of conditions {A, ®, =>0}
and {A,0, =<0} would simultaneously correspond. Actu-
ally, a comparison with the exact theory permits one to
recognize that, for each equilibrium point, only one of
these terns must be taken into account, the sign ambiguity
being merely a consequence of the approximations made.
In fact, it is easily verified that the coefficients w;, and w, of
the exact polynomial are related to the quantities A and ©
through the expressions
C)
H (35)
where

H=H, H,. (36)

Since, for stable locking, these coefficients are required to
be positive, it results that the actual stability conditions
must be formulated as follows:

A>0; ©>0; >0,
A<0; ©<0; <0,

for H>0
for H<O.

(37a)
(37b)

From the preceding discussion it turns out that no reliable
stability criteria can be provided by a strictly first-order
analysis since at least one higher order information, such as
the sign of H in this theory, is needed. This circumstance,
however, does not greatly affect the convenience of the
simplified approach described here, in that the additional
calculations involved are of no significant complexity.
Moreover, in the most common cases, the sign of H is
positive and this fact can be often recognized simply by
inspection of the circuit equations.

As pointed out in Section I, first-order criteria by other
authors have been already derived, following different pro-
cedures, all their results being similar [4]-[6]. The most
general treatment is that of Hansson and Lundstrom, who
obtained the conditions

A,>0 0,>0 (38)
with
AHE[ (G +%V) (BT+88VTV)]
_[({3G, 9B, 9B aGT)
© —[(a—v‘a: W e )
9By, 3Gr
+2(GT~£ B, o )]VS (39)

in which G and B are, respectively, real and imaginary
parts of the total admittance Y=Y, + Y, =1 e Vet
Recognizing that this admittance is related to the function
O by the expression

Y,(jow, V)—I (40)

ST N=1(jw)-N(jw.V)

'Y and 7, qe/” are the Norton s equivalent admittance and current of
the hnear network on the right-hand 51de of the a—a’ reference plane.
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it can be demonstrated that the condition A ;>0 is actually
equivalent to A>0, whereas the condition ®,>0 does not
correspond to ®>0, except for free-running oscillators or
particular circuits. Furthermore, a condition analogous to
Z20 does not subsist, nor is the influence of a quantity
like H taken into account. Owing to these differences, our
first-order analysis gives quite satisfactory results even in
those cases in which Hansson’s theory, while directly appli-
cable (H>0), does not succeed (see Section V for a rele-
vant example). This better predictability is due, in the
authors’ opinion, to the more rigorous approach followed
here in deriving the characteristic polynomial of the sys-
tem, which causes the functions 90’ and 90 to be handled
mstead of G, and B;. Indeed, it does not seem a correct
procedure to deduce a set of variational equations merely
by substituting the complex frequency s for jw in Y, and
then expanding, as done in [4]-[6].

V. EXAMPLES

In this section, the proposed methodology is applied to a
double-tuned oscillator modeled by the first-harmonic
equivalent circuit depicted in Fig. 2. For the sake of
simplicity the active element is supposed to be char-
acterized by a cubic instantaneous i-v relationship.
According to (4) and (6), the first-harmonic nonlinear
conductance G,(V') then has the form

Gn(V) = Gn0+ GnZVz‘

(41)

Assuming a synchronous tuning of the two resonant cir-
cuits (LC=L'C'=1/w;) the following steady-state equa-
tion is obtained:

(1—(;“’;)2)ZQQ'—(§O)2(1+R0@)+]‘§O

2 2
w Vv . ) P
d1—-1= ’ = = _as
( (2] )(Q+QRoGn) = 2] [ 22
(42)
where
R, I3
8
is the available injection power
O=wCR,
/:wOL,

are the equivalent quality factors of the resonant circuits,
and
~TFR Gy

VO = R OGn2

I/OZ
2R,

P,=

(45)

are the RF voltage amplitude and output power corre-
sponding to the w, frequency undriven oscillation. Identify-
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G.(V) L C L

Fig. 2. First-harmonic equivalent circuit of a double-tuned injection-
locked oscillator.
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0.99 0.995 1 1.005 Yo,

Fig. 3. Stability diagrams (exact theory) for the circuit of Fig. 2: RoG0
=-=2, 0=100, Q'=75. Constant injection power loci are superim-
posed: (a) P,./Py=—10 dB, (b) —15 dB, (¢) —20 dB, (d) —25 dB.
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© a

1.5

1.0 +

0.5

0

(D/wo

0.99 0.985 1 1.005

Fig. 4. Stability diagrams (exact theory) for the circuit of Fig. 2: RG,o
=—2, =100, Q'=125. Constant injection power loci are superim-
posed: (a) P,,/P,—10 dB, (b) —15dB, (¢) ~20dB, (d) —25 dB.

ing in (42) the normalized expressions of 9’ and 9"

w=fi-(o) oo (& e

“ (46)

17 w 2 14
€N —;(‘)(1 (wﬂo) (Q+Q'RG,)
by means of (26) and (28), the eighth-degree characteristic
equation of the system is deduced. Since the behavior of a
double-tuned oscillator is different depending on whether
the two resonant circuits are undercoupled (Q>Q’) or



CALANDRA AND SOMMARIVA: ANALYSIS OF INJECTION-LOCKED OSCILLATORS

R.B.. [

010
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-0.410 ¢t

-0.45 L
Fig. 5. Admittance locus Y.(jw) for the circuit of Fig. 2: Q=100,

Q'=75.
R.Be
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Ro Geq

" -0.05

~0.10

~0.15 &

Fig. 6. Admittance locus Y(jw) for the circnit of Fig. 2: Q=100,
0'=125.

overcoupled (Q<Q), both cases have been analyzed. The
corresponding stability regions, plotted on a voltage-
frequency plane by means of a digital computer, are shown
in Figs. 3 and 4, respectively. Constant injection power
loci, as calculated from (42), are superimposed. When the
oscillator is undercoupled, there is only one free-running
equilibrium point and it is stable. Around it, the locking
band monotonically increases for increasing synchronizing
powers. Otherwise, when the oscillator is overcoupled, out
of the three free-running equilibrium points only the outer
two are stable. Around them, when a synchronizing signal
is injected, two separated locking bands arise, which, be-
yond a certain power level, join together forming a con-
tinuous band. Therefore, for sufficiently high injection
levels, the phase lock can be achieved also in the neighbor-
hood of the w, frequency, where oscillations are normally
inhibited. '

All thesé phenomena are actually observed in practice
and have been reported by Kurokawa [8]. He explained the
experimental results through his graphical method, corre-
lating this behavior, typical of multiple-tuned oscillators,
with the occurrence of a loop in the admittance locus
Y, (jw) (cf. Figs. 3 and 4 with Figs. 5 and 6).
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VA%

o

0.99 0.995 1 1.005 Yo,

Fig. 7. Stability diagrams (first-order theory) for the circuit of Fig. 2:
R¢Gro=—2, @=100, Q’="75. Constant injection power loci are super-
imposed: (a) P,,/P,=—10dB, (b) —15dB, (¢) —20 dB, (d) —25 dB.

Ve

o

0.99 0.995 1 1.005

Fig. 8. Stability diagrams (first-order theory) for the circuit of Fig. 2:
RyG,o=—2, 0=100, 0’=125. Constant injection power loci are su-
perimposed: (a) P,,/Py=—10dB, (b) —15dB, (c) —20dB, (d) —25
dB.

Yo,

The diagrams of Figs. 3 and 4 can be now compared
with those provided by our first-order theory. Since, for
this circuit, the quantity H is always greater than' zero,
stable areas are identified by positive A, ©, and =. There-
fore, drawing the curves defined by A=0, ®=0, and =0,
the stability regions depicted in Figs. 7 and 8 are obtained.
The comparison shows that, no matter what the shape of
the admittance locus involved, these diagrams are nearly
indistinguishable from the exact ones in the upper part,
whereas in the lower part, due to the approximations made,

"they exhibit an improper stability region. Consequently, if

only a perturbation of the free-running operating condi-

tions is considered (which does not necessarily correspond,
however, to low injection levels), the first-order analysis

described here is reasonably accurate and sufficient, in any

case, for a qualitative investigation of the locking stability.
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‘7V’

°

0.995 1 1,005 Ve,

Fig. 9. Stability diagrams (Hansson’s theory) for the circuit of Fig. 2:
RoG,0=—2, 0=100, Q'=75. Constant injection power loci are super-
imposed: (a) P,;/Py=—10 dB, (b) — 15 dB, (¢) —20 dB, (d) —25 dB.

0.99

0.99 0.995 1 1.005

(D/wo

Fig. 10. Stability diagrams (Hansson’s theory) for the circuit of Fig. 2:
RyG,o=~2, 9=100, Q'=125. Constant injection power loci are su-
perimposed: (@) P,;/P,—10 dB, (b) —15 dB, (¢) —20 dB, (d) —25
dB.

On the contrary, less homogeneous results are provided
by Hansson’s criteria (see Figs. 9 and 10). Indeed, while a
good agreement with the exact diagram is found when the
oscillator is undercoupled, such an agreement does not
exist when the oscillator is overcoupled. Particularly, in this
latter case, due to the influence of the condition on @, a
continuous locking band cannot be achieved whatever the
injection level, in clear contradiction with experimental
observations.

VL

For the assumed circuit characterization of an injection-
locked oscillator, both exact and first-order stability condi-
tions have been derived in analytical form. The examples
worked out demonstrate good agreement of this theory
with experimental observations on multiple-tuned oscilla-
tors, whose behavior under large-signal injection was so far
predictable only through graphical methods. The main
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hypothesis involved in our ‘calcuiatiors is ‘a sirigle-mode
quasi-static operation that is usually verified in microwave
sources with untuned harmonics. The proposed approach
can then be useful in microwave techniques for perfor-
mance optimization of injection-synchronized oscillators,
especially when computer-aided design procedures are
employed.
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