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Stability Analysis of Injection-Locked
Oscillators in Their Fundamental

Mode of Operation

ENRICO F. CALANDRA, MEMBER, IEEE, AND ANTONINO M.

Abstract — Phase-lock stability of fundamental-wave injection -
synchronized oscillators is investigated on the basis of a new time-domain

approach. Starting from a quite generaf oscillator modeling and assuming

single-frequency qnasi-static operation, both exact and first-order ap-

proximate stability criteria are derived in a fully analytical form suitable for

computer implementation. The examples worked out demonstrate good

agreement of this theory with experimental observations available in the

literature on multiple-tuned oscillators, whose behavior under Iarge-signaf

injection was so far predictable only through graphical methods.

I. INTRODUCTION

HE LOCKING STABILITY of injection-synchronized

oscillators in their fundamental mode of operation,

first analyzed by Van der Pol in 1927 [1], has been investi-

gated by several authors under various simplifying hy-

potheses [2]-[8]. The simplest approach was presented by

Adler [2] who, studying the regenerative triode oscillator,

derived an expression of the available locking bandwidth

for highly saturated single-tuned oscillators under low in-

jection level operation. Later an extension of this theory to

higher levels has been developed by Paciorek [3]. Both of

these treatments have practical interest for microwave tech-

niques since they permit simple explanation of a number of

experimental observations. Nevertheless, they become in-

adequate when an instantaneous amplitude limitation can-

not be assumed since, in this case, the nonlinear character-

istics of the active device cannot be neglected. A more

comprehensive circuit model, in which these nonlinearities

are taken into account under the simplifying assumption of

frequency independence, has been then examined by

Kurokawa [4]. By means of a first-order approximation he

derived some general stability criteria for low-level injec-

tion. This approach has been subsequently extended by

other authors to the case in which the nonlinear immit-

tance of the active device is frequency dependent and the

level of the injected signal is high [5], [6]. However, as

pointed out by Kurokawa himself [7], all these first-order
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Fig. 1. Equivalent circuit of an rejection-locked oscillator.

theories fail when the tank circuit of the system under

examination exhibits a loop in its immittance 10CUS(such

as in multiple-tuned oscillators). As an alternative, he

worked out a quasi-static theory capable of explaining all

the common phenomena observed in practice [7], [8]. Un-

fortunately, the proposed method is rather cumbersome,

due to the graphical nature of the procedure.

In this paper, a new quasi-static theory is developed. It

permits, whatever the injection level, an exact investigation

of the locking stability in a fully analytical form suitable

for computer implementation. Starting from a quite gen-

eral oscillator modeling, a differential equation is first

derived, rigorously describing the behavior of the nonlinear

system (Section II). A stability-equivalent shortened equa-

tion is then obtained which enables a compact formulation

of the phase-lock conditions through classical algorithms of

System Theory (Section III). On this basis, improved first-

order criteria are also deduced allowing a significant com-

parison with the aforementioned approximate theories

(Section IV). As an example, a double-tuned oscillator is

analyzed and the results obtained are discussed with refer-

ence to other theoretical and experimental data available in

the literature (Section V).

II. EQUIVALENT CIRCUIT AND BASIC EQUATIONS

The equivalent circuit employed in our analysis for the

modeling of a negative conductance injection-locked mic-

rowave oscillator is shown in Fig. 1. In this circuit, three

basic elements are in evidence: a sinusoidal current source;
a linear, lumped, time-invariant two-port; a nonlinear ele-

ment. The current source represents the synchronizing gen-

erator which injects power, in the fundamental mode
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analyzed here, at a frequency u close to the free-running

oscillation frequency. The linear two-port represents all the

passive components of the physical system (the resonant

cavities, the nonreciprocal coupling network, the load, etc.)

including the parasitic due to the package and mounting

of the active device [9]. This implies that the a–a’ reference

plane shown in Fig. 1 does not generally coincide with the

terminals of the encapsulated component and, therefore, it

may not be physically accessible. The active part of the

negative conductance device is represented by the nonlin-

ear one-port, whose differential description, in terms of

instantaneous voltage and current, is supposed to be of the

form

();’DP fkCXp, ~Vk = ~q13qDqi (1)

o 1 0

where D stands for the differential operator d/dt, and ap, ~

and ~~ are constants depending on the particular device

and bias. The proposed description is a generalization of

the instantaneous relationship i =f( o) usually employed

for the characterization of memoryless voltage-controlled

nonlinear one-ports. Owing to its differential nature, it is

suitable for the time-domain modeling of a number of

microwave components whose large-signal characteristics

are both voltage and frequency dependent (e.g., voltage-

excited IMPATT diodes [10]). On the other hand, if the

dynamic behavior of the active element is better described

by functions nonlinear with current rather than voltage

(e.g., current-excited IMPATT diodes [11]), the alternative

characterization obtained interchanging voltage and cur-

rent in (1) can be employed. A dual treatment could then

be developed in a manner analogous to that described here.

In order to perform an analytical investigation of the

locking stability we have first to derive a differential equa-

tion relating, in a suitable form, the voltage across the

active element to the injection current. Since the equivalent

circuit of Fig. 1 is supposed to represent a monochromatic

oscillator entrained by a nearly synchronous driving source,

we are allowed to assume, for the RF voltage during

transients, the expression

O(t)= v(t)cos (tit++(t)) (2)

where V(t) and +(t) are slowly varying functions over the

RF period. This single-frequency quasi-static hypothesis,

extensively adopted in the literature dealing with this sub-

ject [4]–[8], is usually verified to a high degree of accuracy
when untuned-harmonics microwave oscillators are con-

cerned. Therefore, it does not constitute a significant limi-

tation to our purpose.

Substituting (2) into (1), after some manipulation, we get

(i)’ ik[dp,k(n
o 0

. Vcos(k)t+h+)” = fq~qDqi (3)

o

where the functions tip, J V) are given by

I

‘nt ‘K/2) c;,
xi ~CIP,2zv2’-1j k=O
1

hp,~(v)= in~{(K–k)/2} ~;z+k

Zi
~ ,,+kv2, +k–1

z2z+k–1 P,-
k+O

0

(4)

in which C: represents the binomial coefficient m !/( n !( m

—n)!). Since, for each k, the terms contained in the square

brackets at the left-hand side of (3) are substantially

sinusoidal quantities of frequency ku, we can separate the

equations pertaining to different current components

through a harmonic balance method. The fundamental-

wave differential characterization of the nonlinear element

is, therefore, expressed, in complex form, by

j’D’(&p,,Ve%J”’)= f#qDq(hJ%J”’) (5)

o 0

where 1(t) and +(t) are the amplitude and phase of the

first-harmonic component of the current. Setting V(t),

@(t ), I(t), ~(t) constant in this equation, we find the

following expression for the nonlinear admittance:

P

Oq

whose structure makes it evident that the coefficients hp.,

and /3~ can be calculated through computer reduction of

steady-state measurements on the active device [12]. From

the right-hand side part of the equivalent circuit one may

easily obtain, through classical methods of analysis, the

differential equation

&h Dh(VeJ%J”’ )= fr8,Dr(IeJ*eJ”’)+ ~~c,DS(loe’@’)
o 0 0

(7)

in which y~, d,, and c, are constants depending on the

particular network involved. By means of an elimination

algorithm (5) and (7) can be combined into

#nD”(WH(V) Ve~*e~”’ )= f., (@)mwmIoeJw’. (8)
o 0

Introducing now, for the sake of compactness, the complex

frequency

(9)

and the differential operator

(D+s)Of(V)=f(V)

(D+ S) ’f(V) =( D+,Y){(D+S)k-’f( V)} (10)
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the nth term on the left-hand side of (8) can be put in the If we introduce now

form

D“(9Z~(V). V(t)eJo(t)eJU[)
W=jn(jti)”wn

o

‘((~+~)nwn(~))V (t)eJ@’’’eJo’ (II)

which constitutes an extension of the symbolic notation

presented by Kurokawa in [4]. Substituting (11) into (8)

and canceling the common factor e’”t, we get finally

This phasorial relationship, to the authors’ knowledge not

previously derived, rigorously describes the dynamic be-

havior of the system under the assumptions made and is

the starting point of our stability investigation. Under

sinusoidal operation it reduces to the customary form

steady-state equation

M

!nl=~m(jw)mwm (17)

o

and recognize that

the more concise expression is obtained from (16)

ak% dk~+j— —

1)
Vero=91Z10. (19)

atik dtk

($(jw)n+e’+=()~m(~~)m% 10 (13)
Separating real and imaginary parts, we get then

int{N/2} (_ l)P

[(

1 ~2P~~

w’+ ~ — –—

)

32P+13~ d2PJ7

which implicitly defines the coordinates V,, O, of the equi-

librium points corresponding to a given couple of input
~ (2P)! V a@2P + a@2paV dtz~

parameters l., 0.

HI. LOCKING STABILITY ANALYSIS

In order to evaluate if a particular equilibrium point

represents a stable locking condition, we have to ascertain

whether a small perturbation in the corresponding steady-

state values of amplitude and phase decays or not with

time. It will be shown here that such investigation can be

performed, after appropriate manipulation of (12), resort-

ing to the classical methods of System Theory. In this

connection, let us observe that in the expansion of (D+

s )“ 9Ln all the terms of the form

:Hap’”(s)qk’14)g(v)” rI

with

n—l

can be eliminated since, as will be clear later on, they give

no contribution to stability calculations. Therefore, the

following reduced expansion holds:

azpq~~ d2P~

1

int{(N+l/2))

—- Eq

(-l)’

[(

1 ~2q–1~(/
—

au2p dt2P (2q-l)! ~ ati~q-l
1

)
a’29q,f~ d29-lv

+

a2q-1~, ~2q-l@

—+
a29–laV dt29-1 ati2q-1 d12q-1

1

=#(W’cos@+W’’sin@) (20a)

and

int{N\2} (_ l)P

[(

1 a2P~~~
q“+ ~ — –—

)

a2p+l~” dzPV

~ (2P)! V adp + ati2pav, dt2p

=$(%’’cos@-%’sin@) (20b)

where

%’ERe{!9L} %“-Im{%}

[(%d%. dkv

) I

9iL’sRe{9R} W“-Im{W}. (21)
-&+— fi . (15)— ‘Jmn dtkdV dtk As (20a) and (20b) can always be solved for the maximum

Substituting the latter into (12) and interchanging the order derivatives d NV/dt N and dNq/dt’, respectively, they

order of the summations at the left-hand side yields can be substituted by an equivalent set of first-order dif-
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ferential equations of the form

(

dx~ _

1
‘—xk~z ,dt

k=l,2,. ..,22–2

dx2N_1 _

dt
–t,(x~$.xz, ” “ “,.X2,V)

dx
-#=f2(%x2,”””, x2N) (22)

with

Xk =

k–1

d~ V
k–1 ‘

k odd

dt~
k–2

(23)

Id~+
k even.

k–2 ‘

dt~

This fact enables us to make use of the assessed techniques

employed for the local stability analysis of nonlinear sys-

tems described by state equations [13]. As a first step in

this procedure, the Jacobian matrix associated with the

system (22) must be calculated

J=

+t5)”””iw%’)..............................................
*(%) &(%)jx,=v,,x2=,f,x=o(z=3>2.70

According tc

J=

(24)

[24), from (13), (20) and (22 we find

where

01 1
— –y–.––_–––
aobo , al b~ . ..aN_lbN_l (25)

2NX2N

1-

+[9v]V,, k=O

~= (~~)(k+l)/2 ak~,

k k !Hv
[1

k odd
auk v,’

(–~)klz akgj,,

k !Hv
[1

k even
aok v,’

dk=.

with

-+p+, k=o

(- ~)(k+l)/’2 ak~t, ]

k !H+
[

k odd
ad j v,’

(26)

[1
(–l)k/2ak~t

—

k !H+
tt even

auk v,’

+
aN+’(m’-w

1.ad’av ~,

[

H+= (– l)i”’{(N+l)/2} aN(.~,_~,,)

N!
1&dN v,”

(27)

The characteristic equation associated with the Jacobian

matrix (25) is, therefore, given by

A2N–(aN_1+dN_1) A2N-1

(
N–2 N–1

+ ~k ~h ahdN+k–h

)

–bhcN~k_h–ak–dk ANGk

II k+l

(
N–1 k

)

2N

+ ~k ~hahdk–h
–bhck_h Ak= ~kwk~k=o

o 0 0

(28)

whose roots, for the asymptotic stability of the equilibrium

point considered, must have negative real parts. This inves-

tigation can be easily accomplished resorting to one of the

conventional methods available in the literature, such as

Routh criteria, which are suitable for a straightforward

computer implementation.
Before concluding let us recognize that if we had em-

ployed the complete expansion of (D+ ~)“9Z~. the func-

tions ~1 and f2 in (22) would contain now additional terms

of the form

2N 2N

h(xl)”k~3xr, with ~krk> 1. (29)

3

A little thought reveals, however, that these terms do not

affect the exactness of the characteristic polynoml, since

their individual contribution to the elements of the Jacobian
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matrix etiibits at least a multiplicative factor x~ (k z 3)

and this factor is zero at equilibrium points.

IV. IMPROVED FIRST-ORDER CRITERIA

The analysis carried out in the previous section shows

that a set of 2N inequalities is to be tested in order to

perform an exact investigation of the phase-lock stability.

Howeverj if only a qualitative picture of the locking phe-

nomena is needed, a more compact set of stability criteria,

deduced from a first-order approximation, can be conveni-

ently applied. This approximate approach is based on the

simplifying assumption that all higher order time deriva-

tives of the RF voltage amplitude and phase are negligibly

small as compared with the first-order ones, allowing us to

make use of the reduced expansion

(D+s)nmn=(ju)nmn+ n(jti)n-’

.[(~+~)++j+’]. (30)

Substituting (30 into (12) we get, through a procedure

similar to that followed in Section 111, the system of

differential equations

=$(%’cos@+%’’sin@)

=$(91L’’cos@-’31sin@) @). (31)

With this system, a 2X 2 Jacobian

whose characteristic polynomial is

A2+:A+$
. .

where

matrix is associated,

(32)

(
a2~,

–’%” +~+— )1auav ~t

[–(-

-_ am’ I am’ ~ aKx’

‘= am v aa a@av )

(

+ am,” 1 am” + a2gj,,
—— ——

au v a. )1ad”v,” (33)

According to this reduced polynomial, the following first-

order stab~lity criteria result:

-$>0 :>0 (34)

1141

to which both the tern (triplet) of conditions {A, ~, E >0}

and {A, 6, E <O} would simultaneously correspond. Actu-

ally, a comparison with the exact theory permits one to

recognize that, for each equilibrium point, only one of

these terns must be taken into account, the sign ambiguity

being merely a consequence of the approximations made.
In fact, it is easily verified that the coefficients WOand w, of

the exact polynomial are related to the quantities A and @

through the expressions

(35)

where

H= HV. H+. (36)

Since, for stable locking, these coefficients are required to

be positive, it results that the actual stability conditions

must be formulated as follows:

A>o; @>O; E>O, for H>O (37a)

A<O; 0<0; S<0, for H<O. (37b)

From the preceding discussion it turns out that no reliable

stability criteria can be provided by a strictly first-order

analysis since at least one higher order information, such as

the sign of H in this theory, is needed. This circumstance,

however, does not greatly affect the convenience of the

simplified approach described here, in that the additional

calculations involved are of no significant complexity.

Moreover, in the most common cases, the sign of H is

positive and this fact can be often recognized simply by

inspection of the circuit equations.

As pointed out in Section I, first-order criteria by other

authors have been already derived, following different pro-

cedures, all their results being similar [4]–[6]. The most

general treatment is that of Hansson and Lundstrom, who

obtained the conditions

L~>() @H>o (38)

with

[( —v +BT BT+!&aGT

‘H= G=“+ av )( )1 v,

[(

~ ~ aGT a~= aBT aGT v
‘H av ati – av ati )

(
+2 G=% –BT~

)1 v=
(39)

in which G~ and BT are, respectively, real and imaginary

parts of the total admittance Y=- Y. + Ye~= I,qeJo/ Ve~@.’

Recognizing that this admittance is related to the function

W by the expression

I,qejg
YT(jCo, v)= ~%=f(m)”wti. v) (40)

o

1Y,q and leqeJ* are the Norton’s equivalent admittance and current of

the linear network on the right-hand side of the a–a’ reference plane.
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it can be demonstrated that the condition A”> O is actually

equivalent to A> O, whereas the condition @~> O does not

correspond to @>0, except for free-running oscillators or

particular circuits. Furthermore, a condition analogous to

E ~ O does not subsist, nor is the influence of a quantity

like H taken into account. Owing to these differences, our

first-order analysis gives quite satisfactory results even in

those cases in which Hansson’s theory, while directly appli-

cable (H> O), does not succeed (see Section V for a rele-

vant example). This better predictability is due, in the

authors’ opinion, to the more rigorous approach followed

here in deriving the characteristic polynomial of the sys-

tem, which causes the functions 92’ and %“ to be handled

instead of G~ and BT. Indeed, it does not seem a correct

procedure to deduce a set of variational equations merely

by substituting the complex frequency s for@ in Y~ and

then expanding, as done in [4]-[6].

V. EXAMPLES

In this section, the proposed methodology is applied to a

double-tuned oscillator modeled by the first-harmonic

equivalent circuit depicted in Fig. 2. For the sake of

simplicity the active element is supposed to be char-

acterized by a cubic instantaneous i –v relationship.

According to (4) and (6), the first-harmonic nonlinear

conductance G~(V) then has the form

G.(V)=Gno+Gn2V2. (41)

Assuming a synchronous tuning of the two resonant cir-

cuits (LC= L’C’ = 1/u~ ) the following steady-state equa-

tion is obtained:

where

ROI;
pa. G —

8

is the available injection power

Q= UOCRO

Q,=%”

are the equivalent quality factors of the

and

‘0=-

PO.K
2;0

(42)

(43)

(44)

resonant circuits.

(45)

are the RF voltage amplitude and output power corre-

sponding to the U. frequency undriven oscillation. Identify-

Gn(V) L C L’ C’ RO

=’0

Fig. 2. First-harmonic equivalent circuit of a double-tuned injection-
locked oscillator.

1.0

0.5

0

0.99 0.995 1 1.005 f%%

Fig. 3. Stability diagrams (exact theory) for the circuit of Fig. 2: R ~Gno
= – 2, Q= 100, Q‘ = 75. constant injection power loci are superim-
posed: (a) F’a,/PO= – 10 dB, (b) –15 dB, (c) –20 dB, (d) –25 dB.

v~vl
o

1.5

1.0

0.5

0

Fig. 4.

0.99 0.995 1 1.005 @/iz,,
Stability diagrams (exact theory) for the circuit of Fig. 2: R ~G.O

= – 2, Q = 100, Q’= 125. Constant injection power loci are superim-
posed: (a) PaJ/PO–10 dB, (b) –15 dB, (c) –20 dB, (d) –25 dB.

ing in (42) the normalized expressions of %’ and W”

(46)

by means of (26) and (28), the eighth-degree characteristic

equation of the system is deduced. Since the behavior of a

double-tuned oscillator is different depending on whether

the two resonant circuits are undercoupled (Q> Q’) or
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Fig. 5. Admittance locus

‘“B”’[ \fo03

0.10

0.05

0

-0.05

-0.10

-0.15

Ycq(ja) for the circuit of Fig. 2: Q= 100,

Q’=75.

0999

/’
I

0.6 0.7 1.1 R. G,,

1.001

Fig. 6. Admittance 10CUS Yeq(ja) for the circuit of Fig. 2: Q= 1oo,”

Q’=125.

overcoupled (Q< Q’), both cases have been analyzed. The

corresponding stability regions, plotted on a voltage–

frequency plane by means of a digital computer, are shown

in Figs. 3 and 4, respectively. Constant injection power

loci, as calculated from (42), are superimposed, When the

oscillator is undercoupledz there is only one free-running

equilibrium point and it is stable. Around it, the locking

band monotonically increases for increasing synchronizing

powers. Otherwise, when the oscillator is overcoupled, out

of the three free-running equilibrium points only the outer

two are stable. Around them, when a synchronizing signal

is injected, two separated locking bands arise, which, be-

yond a certain power level, join together forming a con-

tinuous band. Therefore, for sufficiently high injection

levels, the phase lock can be achieved also in the neighbor-

hood of the ~0 frequency, where oscillations are normally

inhibited.

All these phenomena are actually observed in practice

and have been reported by Kurokawa [8]. He explained the

experimental results through his graphical method, corre-

lating this behavior, typical of multiple-tuned oscillators,

with the occurrence of a loop in the admittance locus

Yc~(jti) (cf. Figs. 3 and 4 with Figs. 5 and 6).

y“:

1.5

1.0

0.5

0.99 0.995 1 1.005 @\ino

Fig. 7. Stability diagrams (first-order theory) for the circuit of Fig. 2:

R ~GEO= – 2, Q= 100, Q’= 75, Constant injection power loci are super-
imposed: (a) Pa$/F’o= – 10 dB, (b) – 15 dB, (c) –20 dB, (d) –25 dB.

1.5

1.0

0.5

0

0.99 0.995 1 1.005 woo

Fig. 8. Stability diagrams (first-order theory) for the circuit of Fig. 2:
R ~GnO= – 2, Q= 100, Q’= 125. Constant injection power loci are su-

perimposed: (a) Pa,/PO=–10 dB, (b) – IS dB, (c) –20 dB, (d) –25
dB.

The diagrams of Figs. 3 and 4 can be now compared

with those provided by our first-order theory. Since, for

this circuit, the quantity H is always greater than zero,

stable areas are identified by positive A, @, and E. There-

fore, drawing the curves defined by A = O, @= O, and S= O,

the stability regions depicted in Figs. 7 and 8 are obtained.

The comparison shows that, no matter what the shape of

the admittance locus involved, these diagrams are nearly

indistinguishable from the exact ones in the upper part,

whereas in the lower part, due to the approximations made,

they exhibit an improper stability region. Consequently, if

only a perturbation of the free-running operating condi-

tions is considered (which does not necessarily correspond,

however, to low injection levels), the first-order analysis

described here is reasonably accurate and sufficient, in any

case, for a qualitative investigation of the locking stability.
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0.99 0.995 1 1.005 rvioo

Stability diagrams (Hansson’s theorv) for the circuit of Fiu 2:
R ~Gno= – 2, Q= 1~0, Q’= 75. Constant injection power loci are s~per-
imposed: (a) Pa$/PO= –10 dB, (b) – 15 dB, (c) –20 dB, (d) –25 dB.

1.5

1.0

0.5

0
0.99 0.995 1 1.005 w%

Fig. 10. Stability diagrams (Hansson’s theory) for the circuit of Fig, 2:

R ~Gno= – 2, Q= 100, Q‘ = 125. Constant injection Dower loci are su-

perimposed: (a) Pa,/PO– 10 dB, (b) – 15dB, (c) ’20 dB, (d) –25
dB.

On the contrary, less homogeneous results are provided

by Hansson’s criteria (see Figs. 9 and 10). Indeed, whilea

good agreement with the exact diagram is found when the

oscillator is undercoupled, such an agreement does not

exist when the oscillator is overcoupled. Particularly, in this

latter case, due to the influence of the condition on 6H, a

continuous locking band cannot be achieved whatever the

injection level, in clear contradiction with experimental

observations.

VI. CONCLUSIONS

For the assumed circuit characterization of an injection-

locked oscillator, both exact and first-order stability condi-

tions have been derived in analytical form. The examples

worked out demonstrate good agreement of this theory

with experimental observations on multiple-tuned oscilla-

tors, whose behavior under large-signal injection was so far

predictable only through graphical methods. The main

hypothesis involved in our calcuiaticms is a single-mode

quasi-static operation that is usually verified in microwave

sources with untuned harmonics. The proposed approach

can then be useful in microwave techniques for perfor-

mance optimization of injection-synchronized oscillators,

especially when computer-aided design procedures are

employed.
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